An Energy-Accuracy Tradeoff for Nonequilibrium Receptors

Summary

We explore the application of large deviation theory and
stochastic thermodynamics to biophysical sensors

> We derive two theoretical bounds on the uncertainty of a sensor
modeled as a continuous-time Markov process, in different limits of
what is observable about the process

> First inequality: detailed observations of the process = no
advantage to adding more states/nonequilibrium.

> Second inequality: estimation based on coarse-grained
observable related to occupancy time in a set of states =
estimation accuracy can be improved by driving the network out
of equilibrium and adding more states.

> We verified our bounds using numerical simulations and
optimization, and observe that nonuniform ring networks saturate
the numerically optimal uncertainty curves as a function of energy
consumption.

Sarah Harvey, Subhaneil Lahiri, Surya Ganguli
Department of Applied Physics, Stanford University

How do cells measure external concentrations
and infer information about their environment?

> Surface receptors: ligand binds to receptor
— intracellular response — behavioral
response

> Receptor system has a history of study by
physicists interested in the fundamental
limits on sensing ability

Adler, Julius. Chemotaxis in Escherichia coli. In

> Often modeled with continuous-time MarkoV  sersoy Receptors, Cold Spring Harbor Symp
chains Quant, Biol. 30, (1965).
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We are interested in:

How the observability and network size affects the estimation uncertainty
Tradeoffs between energy, estimation accuracy, and speed.

We derive two bounds on the uncertainty by violating the Berg-Purcell
assumptions in more general cases
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> Cramér-Rao bound gives fundamental limit solid edges = transition rates ~ ¢
on the precision with which the signal can be
estimated based on the observations

Assume:

States are divided into two groups, signaling (/) and non-signaling (1)
“Binding transitions” (/"> . /) are linearly related to signal ¢
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> Is there an advantage to driving this sensor out of equilibrium?

An ergodic Markov chain will relax to steady state distribution with
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‘Nonequilibrium steady state’: Non-zero current loops

> Stochastic thermodynamics:

Measure of the time-reversal

Mean entropy production rate 3T — M H asymmetry of the process

of the system and its environment

Note: £* >0

> Large deviation theory: can study fluctuations in g using Level 2.5 LDT

Large, finite . P(p” = p,jT = j) ~ e PP

1(p, j) is a large deviation rate function
with minimum atp = 7andj = j*

We want to study /(g) = inf I(p, j)
P
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and var(q) =

Can bound as: I(g) < I(p*, j*), as well as I"(g) with intelligent guesses
for p* and j* (see paper S.I.)
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We find:

sensing problem by relating q to ¢

Given some empirical density g, what signal ¢ would make this typical?
(g"(c) = g, solution is estimate ¢) dg* o .,
c— = -
i q q

For networks with only one non-signaling state:
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> Numerical optimization of fully
connected and ring-topology

networks agree Infeasible

Constrained to a particular energy
consumption, we optimize an exact
expression for T X var(¢)/c? obtained by
exactly contracting I(p, j) to I(g) to
leading order
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< Reducing uncertainty requires
energy consumption and addition
of states

Colored circles indicate the smallest number
of states (using colormap from above) at a
particular energy consumption level for which
adding states (up to 10) would improve the
uncertainty by less than 1%.
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Colored lines show the performance of ring
networks with uniform transition rates in each
direction, which saturate the numerically
optimal curve in the limit of large energy
consumption.
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