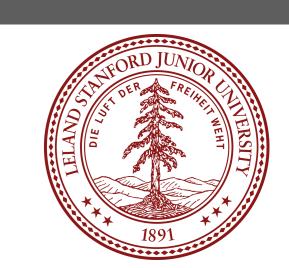
A local synaptic balancing rule for homeostatic plasticity

Chris Stock¹, Sarah Harvey², Sam Ocko², Surya Ganguli² Neurosciences Graduate Program¹, Department of Applied Physics², Stanford University



Summary

Here we explore a local, balancing synaptic update rule for homeostatic plasticity in recurrent networks.

- We propose a mathematical framework for synaptic dynamics that minimizes a general cost function over the synaptic weights while maintaining network functionality.
- This model has attractive mathematical properties such as locality, isospectrality, and convexity.
- This rule predicts that neurons locally balance the cost of input and output and output synapses.

Homeostatic Plasticity

Homeostatic plasticity is a form of synaptic plasticity that is thought to stabilize a network from potential runaway positive feedback induced by Hebbian-type learning. [1]

Hypotheses for mechanisms of homeostatic plasticity include:

- heterosynaptic plasticity: changes at synapses not active during Hebbian plasticity [2]
- synaptic scaling: excitatory input synapses are scaled up or down by a common factor in response to a perturbation to recover a setpoint firing rate. [3,4]

Dynamics

Observation: linear or ReLu network dynamics are simply rescaled under similarity transformation $J \rightarrow UJU^{-1}$

$$\tau \dot{\mathbf{x}} = -\mathbf{x} + \mathbf{J} \phi(\mathbf{x}) \longrightarrow \begin{cases} \tau \dot{\tilde{\mathbf{x}}} = -\tilde{\mathbf{x}} + \mathbf{J} \phi(\tilde{\mathbf{x}}) \\ \text{with } \tilde{\mathbf{x}} = \mathbf{U}^{-1} \mathbf{x} \end{cases}$$

Are some J matrices on this manifold more energetically favorable? Assume metabolic cost function of the form

$$C = \sum_{ij} |J_{ij}|^p$$

We propose a model of synaptic dynamics that moves along the manifold of isomorphic dynamics:

$$\mathbf{J}(t) = e^{-\mathbf{H}} \mathbf{J}^{0} e^{\mathbf{H}}$$
 or $J_{ij}(t) = J_{ij}^{0} e^{h_{j}(t) - h_{i}(t)}$

where $h_i = H_{ii}$. Taking the time derivative, we find

$$\dot{J}_{ij} = J_{ij} (g_j - g_i)$$
 with $g_i = \dot{h}_i$

(This is a special case of a Lax dynamical system, $\widetilde{J} = [J,G]$, with diagonal G)

Choose the form of $\{h_i\}$ such that the time evolution in (2) minimizes the total cost C via gradient descent.

$$\dot{h}_i = -\frac{\partial C}{\partial h_i} \implies g_i = -\frac{\partial C}{\partial h_i}$$

we find:

$$g_k = p\left(\sum_{i} |J_{kj}|^p - \sum_{i} |J_{ik}|^p\right)$$

at equilibrium, $\dot{J} = 0 \implies g_k = 0 \ \forall \ k$

Each neuron balances the sum of its incoming and outgoing synaptic costs.

Acknowledgements

Blavatnik Family Foundation National Defense Science and Engineering Graduate Fellowship Stanford Graduate Fellowship Urbanek Postdoctoral Fellowship

Contact Information

https://ganguli-gang.stanford.edu

Chris Stock: chstock@stanford.edu Sarah Harvey: harveys@stanford.edu Sam Ocko: socko@stanford.edu

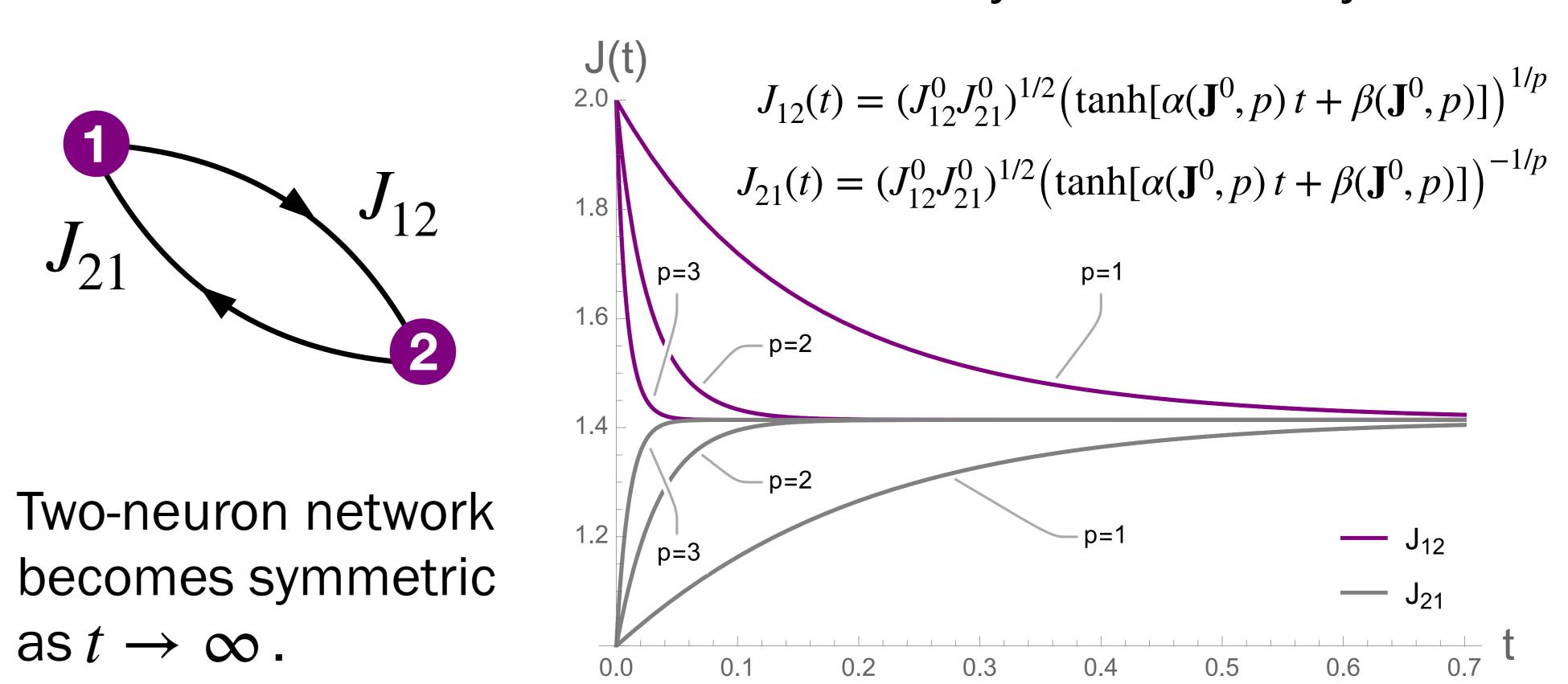
Properties

Convexity: can show that the cost function is convex in $\{h_i\}$ regardless of the value of p.

$$\frac{\partial^2 C}{\partial \mathbf{h}^2} = p^2 \mathbf{L}$$

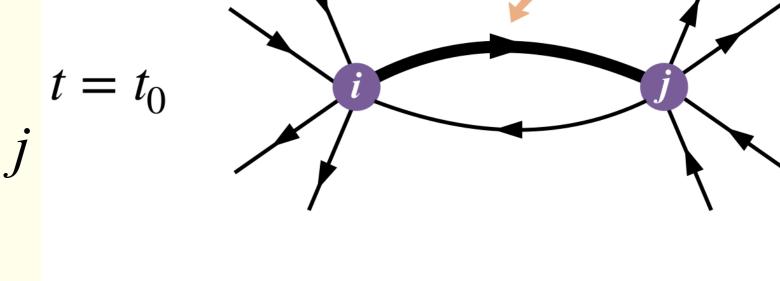
where **L** is the graph Laplacian of the symmetric matrix $\bar{c}_{ij} = c_{ij} + c_{ji}$ with $c_{ii} = |J_{ii}|^p$. Graph Laplacian \Longrightarrow positive semidefinite.

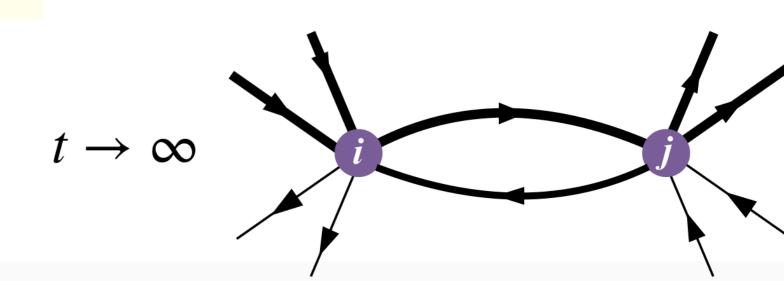
Two-neuron network: we can solve the dynamics exactly.



Response to perturbations: we can expand the dynamics about a fixed point to linear order and find rules for efficiently redistributing a perturbation

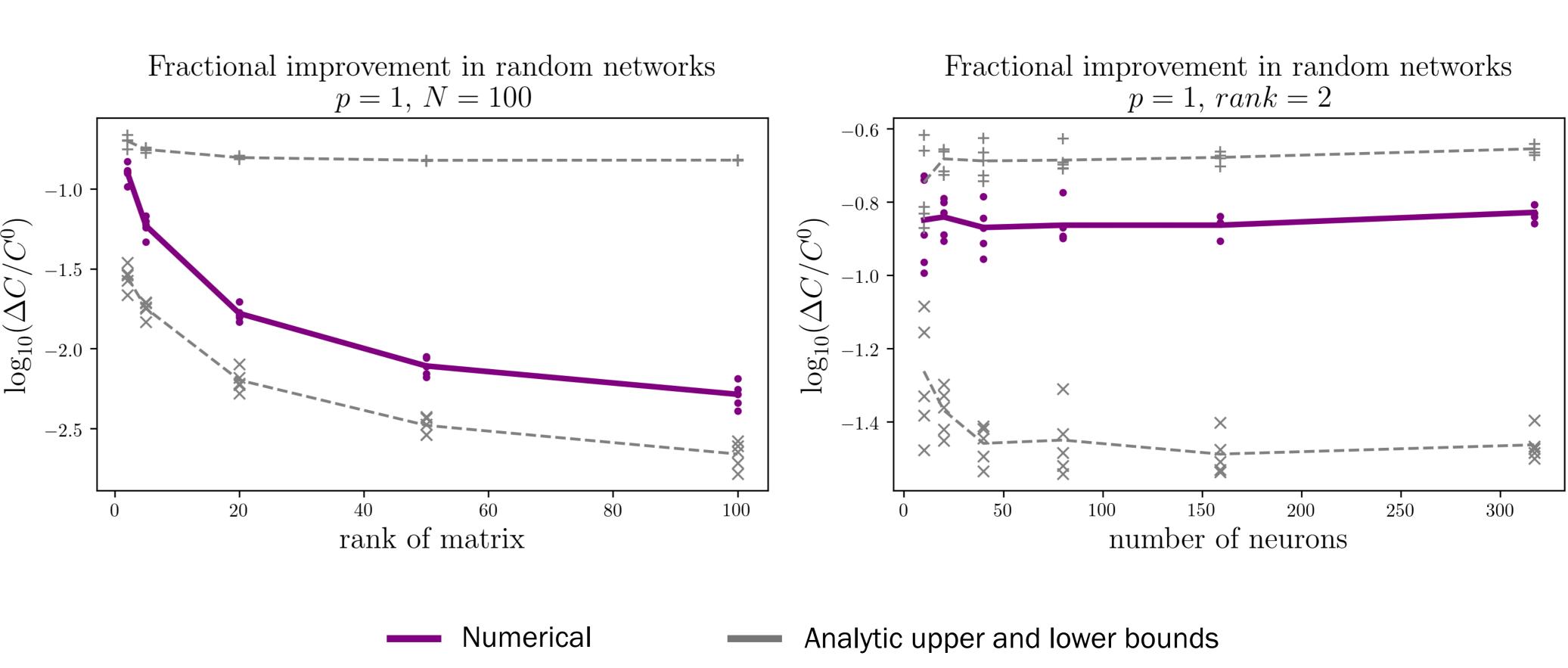
- Weaken J_{ij} and strengthen J_{ji}
- Strengthen the synapses incoming to neuron *i*
- Weaken the synapses outgoing from neuron i
- Strengthen the synapses outgoing from neuron *j*
- Weaken the synapses incoming to neuron *j*





Numerics

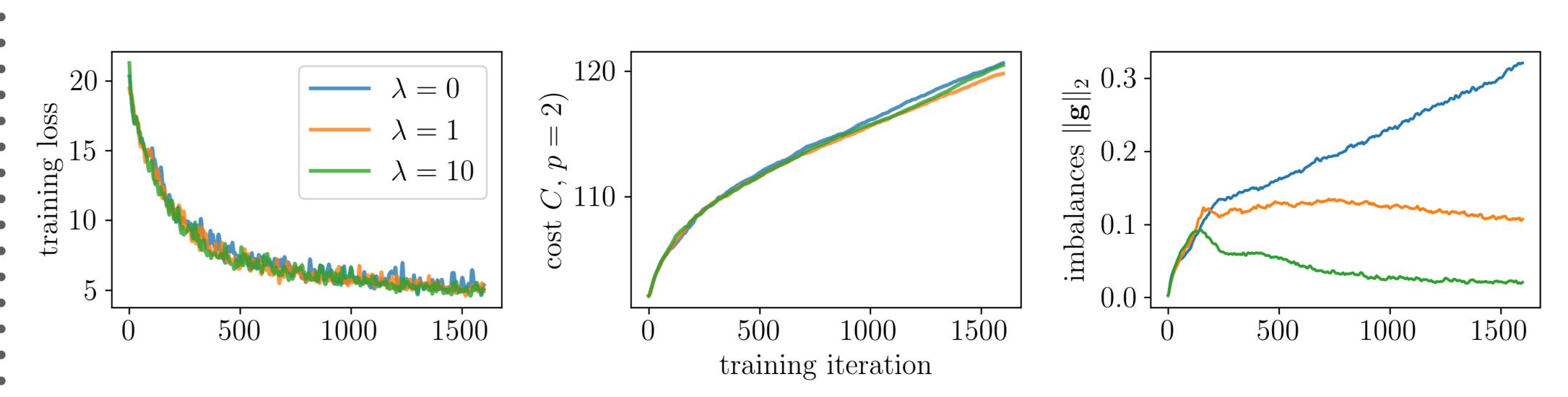
How much does this rule improve the cost, as we vary the rank of the network or the number of neurons?



What is the effect of this rule during learning?

Small network (N = 102) trained to perform context-dependent decision making [5].

Dynamics of learning = gradient descent + λ *(synaptic balancing)



References

- [1] Turrigiano G. (2017) The dialectic of Hebb and homeostasis. Phil. Trans. R. Soc. B 372: 20160258.
- [2] Chistiakova M, Bannon NM, Chen J-Y, BazhenovM and Volgushev M (2015) Homeostatic role of heterosynaptic plasticity: models and experiments. Front. Comput. Neurosci. 9:89.
- [3] Turrigiano, G. (2008) The Self-Tuning Neuron: Synaptic Scaling of Excitatory Synapses. Cell, 135. [4] Ibata, K, et al. (2008) Rapid Synaptic Scaling Induced by Changes in Postsynaptic Firing. Neuron, Volume 57, Issue 6.
- [5] Mante, V., Sussillo, D., Shenoy, K., Newsome, W. (2013) Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature volume 503, pages 78-84.