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Measuring representational similarity o

Comparative analyses are an important tool for understanding complex systems M. Sttt

How do we quantify similarity between neural representations?

—s
Which method to use depends on what aspects of a representation we believe are important X — —fw(f()—
to a system’s computations :
Y P B fz(2m) 1 MxN, —fy(2m) d MxN,
Ex: For X € R and Y € R"*"», we could compute (if N, = N,): e K
. . ? v
dX,Y)=||X—-Y]|lp Euclidean distance '
Not invariant to re-indexing of neurons, scalings, etc.
— Probably not meaningful R™

Two categories of methods

1. (Dis)similarity measures that transform or align neural dimensions 2. (Dis)similarity measures that quantify stimulus-by-stimulus relationships
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e Fit best nuisance transformation and measure distance between data e Compare M x M (stimulus by stimulus) matrices of summary statistics
matrices X and Y K, and K,
e Examples: e Examples:
o Linear regression [1] o Representational Similarity Analysis [4].
o Canonical correlations analysis [2] o Centered Kernel Alignment (CKA) [5]
o Procrustes shape distances [3] o Bures distance/Normalized Bures Similarity (NBS) [6]
e Connected to geometry of features in the space of neural activations e Connects to cognitive science/psychology literature and history of pairwise
similarity experiments
miélirglize d(g:(X),9,(Y)) subjectto g, € G, , g, € G, dKy,K,); Linearkernel = K,=XX", K, =YY’
xzsYy

A theoretical link between shape metrics and Bures distance
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Procrustes size-and-shape distance Bures distance
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P(X,Y) = min [IX - YQI B(Kx, Ky) = || Tr[Kx] + Tr[Ky] - 2Tr | (KY Ky KY?)
Q' Q=I
Shape similarity Normalized Bures similarity o
XY Tr[(KyK
cos 0*(X, Y) = max [ Ql NBS(Ky,Ky) = () ]
Q=1 /T XTX]Tr[Y1Y] vV IKxll[[Kyll

o AN

Theorem. B(Kx,Ky)="P(X,Y),and furthermore, NBS(K x, Ky) = cos0*(X,Y). = These existing measures of

representational similarity are equivalent.

Implications:

e Provides a way to generalize shape distances to cases where N, # Ny
e Provides connections between shape distances and literatures of optimal transport and quantum information theory

e Enables new insights in continuous cases where M — ocoor N,, N, = 0.
Y Random pairs of M = 10 PSD matrices, rank(K, ) = 1, rank(K,,) = 10
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Comparisons with centered kernel alignment (CKA) e L e
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We find that NBS (or shape similarity) and CKA scores can differ substantially § 041 Al -~ § 0.4
Colors: different ways of i fﬂ 2
We derive upper and lower bounds on NBS in terms of CKA by borrowing some results o sampling random P | X - Lower bound eq. (08
from quantum information theory . N -~ upper bound eq. (28)
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Bounds in terms of the kernel matrix (Kx,Ky) < NBS(K x, Ky)? < min[r(Kx),r(Ky) CKA(K x, Ky) |
ranks r( -) \/"“(Kx)’l“(Ky) Lower rank kernel matrices = CKA more

tightly constrains NBS/shape similarity

Uhlmann’s theorem/Fuchs van de Graaf 1-NBS(Kx,Kx)<1-— C’KA(K_lx/Q, K%,/Q) <1—-NBS(Kx,Kx)?

inequalities
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