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Comparative analyses are important tools for understanding complex systems
How do we quantify similarity between neural representations?
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Measuring similarity between neural systems

Comparing representations with linear decoding
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System X

R!"

Xi:
•Representational Similarity Analysis (RSA)  [4] 
• Bures distance (Muzellec et. al.  2018) [6] 
•Centered Kernel Alignment (CKA)  [5] 

•Linear regression  [1] 
•Canonical correlations analysis [2] 
•Procrustes shape distances [3] 

(Dis)similarity measures that transform 
or align neural dimensions

(Dis)similarity measures that quantify 
stimulus-by-stimulus relationships
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Fit alignment  
&  

measure similarity

𝒫(X, Y ) = min
O∈𝒪(N)

∥X − YO∥F

Measure Euclidean distance between 
representations after rotational alignment 

Takes values from  to   (distance) 0 ∞

Compute inner product between centered 
representations and normalize 

Takes values from  to   (similarity)0 1
CKA(X, Y) = Tr XX⊤YY⊤

Tr (XX⊤)2 Tr (YY⊤)2
(Linear kernels)
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Target pattern: 
X readout 
Y readout

CKA(X, Y )

 Decoded pattern:  ⟹
Compute optimal weights for system X

 Decoded pattern:  ⟹
Compute optimal weights for system Y

Measure similarity:  

= 0.82

(Scaled to be unit vectors)

★  Similarity depends on the choice of decoding task

Average decoding similarity/distance
Idea:  Measure similarity over an ensemble of decoding tasks

average decoding similarity (ADS)

To compute these, we must choose:   

1.   Regression loss function 
2.  Ensemble of tasks to average over

We show:  certain choices here  
average decoding similarity/distance 

 popular representational similarity/
distance measures 

⟹
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General mathematical framework 
➡  Set up a family of linear decoding problems

average decoding distance (ADD)
Decoding optimization problem: 

Maximize overlap 
between  and Xw z

Penalty on a norm of 
the weights w

Consider with neuron-by-neuron covariance

This problem has a nice closed form solution: Optimal Decoding Weights

Relations to geometric similarity measures
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w* = argmin ∥Xw − z∥2
2 + λI

v* = argmin ∥Yw − z∥2
2 + λI Ridge regression 

Take  
,  a = 1

b = λ

𝔼z [zz⊤] = I
Take 

,  a = 0
b = 1

(Normalized) Average decoding similarity

zi ∼ {+1, − 1}

ResNet50

M = 1000 ImageNet images

X ∈ ℝM×Nx Y ∈ ℝM×Ny

i = 1

i = M

. . . Compute  
and average decoding 
similarity  
with , 

CKA(X, Y )

ADS(X, Y )
a = 0 b = 1

Ensemble of decoding tasks:  

Chickadee

Typewriter

Yawl 

Many existing approaches
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System Y ∼?
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 Decoded pattern:  ⟹
Compute optimal weights for system X

 Decoded pattern:  ⟹
Compute optimal weights for system Y

Measure similarity:  

= 0.63

(Scaled to be unit vectors)

 is a function mapping symmetric positive definite  matricesG( ⋅ ) ℝM×N → N × N

Special cases

If we also assume identity covariance structure 
of the task ensemble we are averaging over, i.e. 

# of decoding tasks
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ADS with random tasks 
CKA 
ADS with category tasks

More in paper:

Decode 67 coarse 
image categories

AlexNet

‣ Random binary partitions of input images
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Example task 1: color Example task 2: animate/inanimate

= 0.7

Empirical Example:  CKA
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M Stimuli System X System Y

CKA(X, Y )
= 0.7

Target pattern: 
X readout 
Y readout

𝔼z [zz⊤] =
Covariance of 

fMRI responses

# of stimulus images

# of stim
ulus im

ages

Random weights

NSD humans 
V4

Trained deep nets

Average Decoding Similarity 
with human target

System X System Y

Comparative Ecology

Darwin (1845)

Human

Mouse

Pig

Comparative Anatomy

Example:  Comparing deep network representations and human fMRI data

Human subjects 
right hemisphere V1 

Human subjects 
right hemisphere 
face-selective areas 
in IT 
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